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Introduction
The selection of a new combination of antiretroviral drugs when therapy fails in well-resourced 
countries is made on an individual basis using an extensive range of information that is at the 
physician’s disposal, usually including viral load values, CD4 counts, treatment history and, of 
particular relevance in the salvage situation, a viral genotype.1,2 Indeed, genotyping with interpretation 
by one of the many rules-based interpretation systems that are in widespread use is regarded by 
many as a foundation stone of individualised antiretroviral therapy, and has been demonstrated to 
be moderately predictive of virological response.3,4 Selecting the best combination of antiretrovirals 
in resource-limited settings with a limited range of drugs available and where a lack of funds, 
infrastructure and technical expertise make genotyping impractical, can be much more challenging.

In response to this challenge, the HIV Resistance Response Database Initiative (RDI) has developed 
computational models to assist in the selection of the most effective combinations of drugs from 
those available.5,6 The models are able to predict accurately virological response to combination 
antiretroviral therapy, with or without genotypic information, the latter basing their predictions 
on viral loads, CD4 counts, treatment history and time to follow-up.7,8

The RDI models are trained using longitudinal data from clinical cases where the HIV treatment 
has been changed and followed up. A case with all the necessary data (e.g. viral load and  
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global test set (0.80) but at least comparable to that of genotyping with rules-based 
interpretation. The models were able to identify alternative locally available three-drug 
regimens that were predicted to be effective in 69% of all cases and 62% of those whose new 
treatment failed in the clinic.

Conclusion: The predictive accuracy of the models for these South African patients together 
with the results of previous studies suggest that the RDI’s models have the potential to 
optimise treatment selection and reduce virological failure in different patient populations, 
without the use of a genotype.
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CD4 count at the time of the change, details of treatment 
history, drugs in new regimen, time to follow-up and follow-
up viral load value) is termed a treatment-change episode 
(TCE). The models are trained using TCEs from the RDI 
database, containing data from 160 000 patients from more 
than 40 clinics, cohorts and clinical trials in more than 
20 countries around the world in order to make the models’ 
predictions as generalisable as possible to patients from 
different settings. The models consistently achieve accuracy 
(measured as the area under the receiver operating 
characteristic curve [AUROC]) in the region of 75%–80% in 
their predictions of virological response to therapy.

The application of the models as a treatment decision-making 
aid has been assessed in prospective clinical pilot studies 
involving highly experienced HIV physicians in well-
resourced settings and found to be a useful clinical tool.9 The 
RDI models are made freely available as a treatment-support 
tool, the HIV Treatment Response Prediction System (HIV-
TRePS), via http://www.hivrdi.org.

In the EuResist versus Expert (EVE) study, the EuResist 
group has also reported the successful development of 
predictive models that performed as well as the predictions 
made by HIV physicians and virologists, albeit without the 
benefit of full treatment history, in a retrospective study.10

Historically the RDI models have been trained with data 
almost exclusively collected from well-resourced settings as 
this is where antiretroviral therapy was first available. While 
these models were highly accurate for cases from similar 
settings they were less so for cases from low-middle income 
countries not represented in the training data set, typically 
achieving AUROC values of 60%–70%.7 Nevertheless, this is 
comparable to the accuracy of using genotyping with rules-
based interpretation to predict response to therapy. With the 
accelerated roll-out of HIV therapy in low middle-income 
countries, the RDI has now been able to collect significant 
data from such settings, predominantly sub-Saharan Africa, 
and has developed models including these data that have 
proved comparably accurate for test cases from high and low 
middle–income countries.11

Here we report on the evaluation of the current RF models 
used to power the online HIV-TRePS, using data from the 
Phidisa cohort in South Africa. Project Phidisa is a clinical 
research project focused on the management and treatment 
of HIV infection in the uniformed members of the South 
African National Defence Force (SANDF) and their 
dependents with HIV infection treated between 2004 and 
2012.12 ‘Phidisa’ means ‘to heal’ in Setswana.

Research design
The models
The RF models used to power the HIV-TRePS system 
(V5.3.2.0) for patients without a genotype were trained to 
predict the probability of virological response (defined as 

plasma viral load < 50 copies HIV RNA/mL) to a new 
therapy introduced following virological failure (≥ 50 copies 
HIV-RNA/mL), using methods described in detail 
elsewhere.6 In the development of the models, the term 
‘baseline’ relates to data collected while on the failing 
regimen. In summary, the following data from 22 567 
TCEs including 1090 from Southern Africa were used: 
on-treatment baseline plasma viral load (sample taken 
≤ 8 weeks prior to treatment change); on treatment baseline 
CD4 cell count (≤ 12 weeks prior to treatment change); 
baseline regimen (the drugs the patient was taking prior 
to the change); antiretroviral treatment history; drugs in the 
new regimen; a follow-up plasma viral load determination 
taken between 4 and 52 weeks following introduction of 
the new regimen and the time to that follow-up viral load. 
These data were coded as 42 input variables for input into 
the models: baseline viral load (log10 copies HIV RNA/mL); 
baseline CD4 count (cells/mm3); treatment history 
comprising 20 binary variables coding for any experience 
of zidovudine, didanosine, stavudine, abacavir, lamivudine, 
emtricitabine, tenofovir DF, efavirenz, nevirapine, 
etravirine, indinavir, nelfinavir, saquinavir, amprenavir, 
fos-amprenavir, lopinavir, atazanavir, darunavir, 
enfuvirtide, raltegravir; antiretroviral drugs in the new 
regimen, comprising 19 variables covering zidovudine, 
didanosine, stavudine, abacavir, lamivudine, emtricitabine, 
tenofovir DF, efavirenz, nevirapine, etravirine, indinavir, 
nelfinavir, saquinavir, (fos)amprenavir, lopinavir, 
atazanavir, darunavir, enfuvirtide, raltegravir; and time 
from treatment change to the follow-up viral load (number 
of days).11

The models’ performance was assessed by 10× cross-
validation during model development and then with an 
independent global test set of 1000 cases including 100 from 
southern Africa, which were partitioned from the overall 
pool of available, complete TCEs. To prevent overfitting, 
we stopped the training process when the validation errors 
had their global minima. The accuracy of the models as 
predictors of virological response was evaluated using the 
models’ estimates of the probability of response following 
initiation of the new drug regimen and the actual responses 
observed in the clinic (binary response variable: response = 
1 vs failure = 0) to plot ROC curves and assessing the 
AUROC. The optimum operating point (OOP) for the 
models that was derived during cross-validation was used 
as the cut-off for classifying predictions as ‘response’ or 
‘failure’ and used to obtain the overall accuracy, sensitivity 
and specificity of the system. The models’ performance was 
compared with genotypic sensitivity scores derived from 
genotyping with rules-based interpretation systems 
(Stanford, ANRS and REGA), for those cases with genotypes 
available. The models achieved AUCs of 0.79–0.84 (mean of 
0.82) during cross-validation, 0.80 with the global test set 
and 0.78 with the southern African subset. The AUCs were 
significantly lower (0.56–0.57) for genotyping with rules-
based interpretation.11
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TCEs were extracted from the full Phidisa data set that had 
all the data required by the models, as described above. The 
performance of the models as predictors of virological 
response for these cases was evaluated by comparing the 
average of the 10 RF models’ estimates of the probability of 
response following initiation of the new drug regimen to the 
actual responses observed in the Phidisa patients using the 
method described above.

In silico analysis to identify effective alternative 
regimens
In order to assess the potential of the models to help avoid 
treatment failure in a resource-limited setting, where 
models that do not require a genotype may be of most 
value, they were used to identify antiretroviral regimens 
that were predicted to be effective for the Phidisa cases. Of 
particular interest were those cases where the new regimen 
selected in the clinic failed to re-suppress the virus. Baseline 
data were used by the models to make predictions of 
response for alternative three-drug regimens in common 
use, comprising only those drugs that were in use in the 
Phidisa cohort at the time. Again, the OOP (the cut-off 
above which the models’ estimate of the probability of a 
response is classified as a prediction of response) that was 
derived during model development was used, as a test of 
how generalisable the system is.

Results
Characteristics of the datasets
The baseline, treatment and response characteristics of the 
data sets are summarised in Table 1. The 402 Phidisa 
patients had somewhat lower baseline viral loads (median 
of 3.65 log10 copies/mL) than the global data used to train 
and test the models. The original test data set of 1000 TCEs 
had a median baseline viral load of 3.97 and the 100 southern 
African TCEs amongst them had a median viral load of 4.32. 
The median baseline CD4 count of the Phidisa cases was also 
somewhat lower at 230 cells/mL than the global data at 
260 cells/mL but was substantially higher than the original 
100 southern African TCEs at 163 cells/mL.

In other respects, as might be expected, the 402 Phidisa cases 
resembled the southern African subset of the original test set 
somewhat more than the global test set as a whole (and the 
training data from which they were partitioned). For example, 
79% of the Phidisa patients were moving from their first-line 
to second-line therapy, as were 62% of the original South 
African test set, versus 38% of the global test set. The Phidisa 
and original Southern African cases had less previous drug 
exposure overall (median of 3 vs 4 drugs) and greater 
previous exposure to NNRTIs (90% and 94% vs 63%) and less 
to PIs (16% and 11% vs 63%), reflecting the fact that the great 
majority of the African cases were moving from first-line 

TABLE 1: Characteristics of the TCEs in the Phidisa and original test data sets.
Characteristics Phidisa data Original global independent test set † Original southern African cases‡
TCEs/patients 402 1000 100
Male 189 661 36
Female 86 218 56
Not known 127 121 8
Median age (IQR) 35 (32–39) 39 (35–48) 35 (30–40)
Baseline data
Median (IQR) baseline VL (log10 copies/mL) 3.65 (2.66–4.49) 3.97 (2.98–4.97) 4.32 (3.62–5.01)
Median (IQR) baseline CD4 (cells/mm3) 230 (139–328) 260 (123–387) 163 (65–362)
Treatment history
No. switching 1st to 2nd line (%) 316 (79%) 381 (38%) 62 (62%)
No. switching 2nd to 3rd line (%) 55 (14%) 179 (18%) 20 (20%)
No. switching 3rd to 4th line (%) 23 (6%) 115 (12%) 11 (11%)
No. switching 4th line or beyond (%) 8 (2%) 325 (33%) 7 (7%)
Median no.(IQR) previous drugs 3 (3–3) 4 (3–6) 3 (3–4)
N(t)RTI experience (%) 402 (100%) 998 (100%) 100 (100%)
NNRTI experience (%) 360 (90%) 634 (63%) 94 (94%)
PI experience (%) 65 (16%) 630 (63%) 11 (11%)
New regimens

2 N(t)RTI + PI (%) 198 (49.3%) 350 (35%) 70 (70%)
2 N(t)RTI + NNRTI (%) 141 (35.1%) 228 (23%) 22 (22%)
3 N(t)RTIs + PI (%) 2 (0.5%) 74 (7%) 2 (2%)
N(t)RTI + PI (dual therapy) 53 (13.2%) 10 (1%) 0
N(t)RTI + NNRTI (dual therapy) 4 (1.0%) 7 (0.7%) 0
2 N(t)RTI (dual therapy) 1 (0.25%) 23(2%) 2 (2%)
3 N(t)RTI + NNRTI 1 (0.25%) 40 (4%) 0
3 N(t)RTI + NNRTI + PI 1 (0.25%) 13 (1%) 0
4 N(t)RTI + NNRTI + PI 1 (0.25%) 4 (0.4%) 0
Other (%) 0 (0%) 251 (25%) 4 (4%)
Virological response (follow-up viral load < 50 copies/mL) 121 (30%) 364 (36%) 52 (52%)

†, n = 1000; ‡, n = 100.
TCEs, treatment change episodes; IQR, interquartile range; VL, viral load; N(t)RTI, nucleoside or nucleotide reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; 
PI, protease inhibitor.
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therapy of 2 N(t)RTI+NNRTI to second-line therapy, 
comprising 2N(t)RTI+PI in half of the Phidisa cases and 70% 
of the original southern African cases.

There was a similar proportion of virological failures amongst 
Phidisa cases (70%) and original training and test sets (66% 
and 64%) but fewer in the original southern African set (48%).

Results of testing the models with the Phidisa 
treatment-change episodes
When tested using the Phidisa cases, the committee of 10 RF 
models achieved an AUC of 0.72, compared with 0.80 when 
tested with the original global test set and 0.78 with the 
100 southern African TCEs within that test set (Table 2). The 
overall accuracy was 63% (vs 74% and 71% for the original 
test TCEs), the sensitivity 67% (vs 66% and 81%) and the 
specificity 62% (vs 79% and 60%). The ROC curve for the 
committee is presented in Figure 1. The difference between 
the performance of the models with the Phidisa cases and 
with the original global test set is statistically significant  
(p < 0.01), but the comparison with the 100 southern African 
TCEs within it was not (p = 0.26).

When the models were tested separately with the cases of 
switching from first-line to second-line (n = 349) and later 
switches (n = 59), the results were not significantly different. 
The AUC values were 0.73 and 0.68 with overall accuracy of 
64% and 68%, respectively.

In silico analysis
The models were able to identify one or more three-drug 
regimens, comprising only those drugs present in the Phidisa 
database, that were predicted to be effective (the estimated 
probability of the follow-up viral load was above the OOP 
derived during cross validation), for 69% of all the Phidisa 
cases (Table 3). In these cases, the median number of 
alternative ‘effective’ regimens identified was 12. The models 
identified alternatives with a higher estimated likelihood of 
response than the regimen actually used in the clinic, but not 
necessarily above the OOP, in all 402 cases, with a median of 
7 alternative regimens.

There were 281 Phidisa patients (70%) that went on to fail the 
new regimen introduced in the clinic. For these, the models 
were able to identify one or more locally available three-drug 
regimens that were predicted to be effective in 62% of cases. 
The median number of these alternative regimens identified 
was 10. The models identified alternatives with a higher 
estimated likelihood of response than the regimen actually 
used in the clinic in all of the failures with a median of eight 
alternatives.

Discussion
The RDI’s computational models that do not require a 
genotype predicted virological response to a change in 
antiretroviral therapy following virological failure for 
patients from the Phidisa cohort with a level of accuracy that 
was at least comparable to that of genotyping with rules-

TABLE 2: Results of testing the models with the original independent test cases and the 402 Phidisa cases.
Variable Phidisa cases† Original test set‡ Original southern African TCEs§
Sensitivity 67% 66% 81%
Specificity 62% 79% 60%
Overall accuracy 63% 74% 71%
Statistical significance versus Phidisa - p < 0.01 p = 0.26 (ns)
Area under the ROC curve (AUC) 0.72 0.80 0.78

†, n = 402; ‡, n = 1000; §, n = 100.
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FIGURE 1: ROC curves for the committee of RF models tested with a global test 
set (n = 1000), the 100 southern African TCEs from that test set and the Phidisa 
cases (N = 402).

TABLE 3: In silico modelling to identify potentially effective alternative regimens for the Phidisa cases.
Variable All cases† Failures ‡ (70%)

Percentage of cases for which alternative three-drug regimens were predicted to be effective 69 62
Median number of alternatives 12 10
Percentage of cases for which alternative three-drug regimens were predicted to be more effective than the regimen selected 100 100
Median number of alternatives 7 8

†, n = 402; ‡, n = 281.
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based interpretation as a predictor of virological response, as 
observed in several previous studies.3,4,11 The AUC value of 
0.72 for the models compares favourably with AUC values 
typically in the range of 0.55–0.65 for genotyping. Genotyping 
is not used to select the next regimen in South Africa but 
mainly to differentiate patients with drug resistance from 
those with poor adherence and detect patients with second-
line failure who require a third-line, selected on the basis of 
clinical information and according to strict protocols as part 
of a public health strategy. Nevertheless, genotyping with 
rules-based interpretation is widely considered as the gold 
standard for predicting drug sensitivity and response and is 
in widespread use for individualised treatment selection 
around the world. As such it provides a highly relevant 
benchmark against which to compare this and other 
approaches for predicting response to HIV therapy.

It is also encouraging that the models were able to identify 
several alternative, available three-drug regimens that were 
predicted to produce a virological response for two-thirds of 
the cases from the Phidisa cohort, including the virological 
failures. Furthermore, the models were able to identify 
regimens with a higher predicted probability of success than 
the regimen that failed in the clinic, for all cases.

The online treatment support tool, HIV-TRePS, through 
which the models are made available has the facility for users 
to include the annual cost of drugs in their setting and 
instruct the system to include the annual costs of different 
regimens in the report, alongside the predictions of response 
produced by the models. This raises the possibility that 
physicians can use the system to identify alternative regimens 
that are not only predicted to be more likely to produce a 
response but may be less costly than the regimen they would 
otherwise use. Indeed, a recent study of cases treated in India 
revealed that substantial cost savings may be possible 
through use of the system.13

The models’ accuracy of prediction for the Phidisa cases was 
somewhat less than that observed during model development 
and previous independent testing with cases from a range of 
settings, including a subset from southern Africa, although 
the latter difference did not achieve statistical significance. 
South Africa has a uniform programme with strict and 
rational criteria for regimen switches. In this context, the 
moderate performance of the TRePS algorithm is not 
unexpected.

When tested with the original global test set, using the OOP 
derived during cross-validation, the models showed higher 
specificity at 79% than sensitivity (66%). This is the pattern 
found in previous modelling studies and means the models 
are generally ‘conservative’, making relatively fewer incorrect 
predictions of response than incorrect predictions of failure. It 
is interesting to note that the reverse was true when the 
models were tested with the subset of the original test set that 
came from southern Africa (specificity of 60% and sensitivity 
of 81%). This suggests that an upward adjustment of the OOP 
above which a prediction would be classified as a response 

might be desirable to rebalance the classification and optimise 
performance for patients from this region, possibly related to 
treatment starting later in the course of the disease than for 
the global data. For the Phidisa cases, the specificity was again 
reduced at 62%, meaning that the models incorrectly predicted 
response for 38% of the observed failures. However, unlike 
the original southern African test cases, there was no apparent 
compensatory increase in sensitivity, which was 67%.

The fact that the Phidisa patients had somewhat lower 
baseline viral loads than the original global data used to train 
and test the models, as well as the southern African cases 
from the original test set, and substantially higher CD4 
counts than the latter is consistent with Phidisa being a 
closely monitored cohort and much of the training data being 
collected from open clinical practice. Nevertheless, the 
Phidisa and the original southern African patients were 
mainly moving from first- to second-line therapy, so the 
lower sensitivity of the models (60%) and lower observed 
response rate (30%) for the Phidisa patients compared with 
the original southern African patients (81% and 52%, 
respectively) remains unexplained.

It is important to note that one of the input variables for these 
models was the plasma viral load, which previous studies 
have shown to be very important to the predictive accuracy 
of the models.14 Although viral load monitoring is not yet 
routine in most resource-limited settings, it is now 
recommended as the preferred approach to monitoring 
antiretroviral therapy success and diagnosing treatment 
failure in the latest WHO guidelines.15 As technological 
advances enable lower test costs and simpler equipment 
requiring less infrastructure, maintenance and technical 
expertise, so the use of viral load in clinical practice is likely 
to increase.16 It should also be noted that another input 
variable is the CD4 count. This is more affordable and in more 
widespread use in resource-limited settings but not universal, 
and its use may diminish as viral load testing expands.

The definition of virological failure used in the study was a 
single viral load value of > 50 copies HIV RNA/mL, compared  
with repeated measure of 400 copies/mL or 1000 copies/mL 
in clinical practice in South Africa. This threshold was used 
because the majority of the data used to train the models and 
the majority of the settings in which the models are used use 
a definition of 50 copies/mL. A single measure was used in 
order to maximise the number of TCEs available for training 
the models. As the size of the RDI data set increases, we could 
consider the use of multiple viral load measurements and the 
exclusion of those cases with only one.

The study has some limitations. Firstly, it was retrospective 
and, as such, no firm claims can be made for the clinical 
benefit that the use of the system as a treatment support tool 
could provide. Another limitation is that the Phidisa cases 
came from a carefully monitored, military cohort and the 
cases used in the analysis are, by definition, those with 
complete data around a change of therapy. Such data may 
not be truly representative of the general patient population. 
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Nevertheless, the performance of the models in predicting 
outcomes for this independent South African cohort is 
encouraging in terms of the applicability of the approach.

The RDI models and more accurately the HIV-TRePS system 
that they power have wide-ranging potential utility in South 
Africa and other resource-limited settings, for example:

•	 In switching from first- to second-line, following 
treatment protocols, the system can provide predictions 
of which NRTI backbone and choice of third agent, 
comprising locally available drugs, offer the highest 
probability of response.

•	 In switching from second to third-line or beyond, the 
system can help the healthcare professional assemble an 
individualised regimen with the highest probability of 
response.

•	 In doing so, the system can utilise genotypic information 
where available, or produce predictions of response that 
are comparable, or are most likely superior to those of 
genotyping with rules-based interpretation for cases 
where genotyping is not available or affordable.

•	 The system can help to reduce treatment costs. By entering 
their local drug costs into the system, healthcare 
professionals can identify the most effective regimens 
within a budget limit, or select the least costly of a number 
of regimens with similar estimates of effectiveness.

•	 By putting the distilled treatment experience of hundreds 
of physicians treating tens of thousands of patients 
around the world at their fingertips, the system can give 
relatively inexperienced healthcare professionals the 
confidence to make treatment decisions in settings or 
cases not covered by current treatment guidelines, for 
example, in salvage therapy with limited drug options 
available.

Conclusion
In this study, we challenged the RDI models that do not 
require a genotype to predict virological response for patients 
in the Phidisa military cohort in South Africa, most of whom 
were moving from first- to second-line therapy. The models 
performed less well than with a more diverse global test set 
but still achieved a level of accuracy that was at least 
comparable to that observed in previous studies using 
genotyping with rules-based interpretation as a predictor of 
response.

It is encouraging that the models were able to identify 
alternative, available regimens that were predicted to be 
effective for the majority of the Phidisa cases, including those 
that failed the new regimen prescribed in the clinic.

These results and those of previous published studies suggest 
this approach has the potential to optimise treatment 
selection, reduce virological failure, improve patient 
outcomes and potentially reduce drug costs in South Africa 
and other resource-limited settings where resistance testing 
is unavailable or unaffordable.

Note: The methodology, development and cross-validation 
of the random forest models studied in this paper were 
described in previous publications by the RDI and its 
collaborators (6, 7). Consequently, there are some overlaps 
between parts of the Methods section of the papers. The 
novel aspect of the current paper is the evaluation of the 
models as a potential clinical tool with a substantial cohort of 
patients from South Africa.
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